European Supercomputing (HPC) Resources

Ramon Brasser

Origins Research Institute CSFK

My cluster

I have a small workstation cluster in the server room. 74 CPU cores, 9 consumer-grade GPUs.

CPU type and clock speed (Turbo) (GPU)

- 8C Intel i7-6900K @ 3.2 (3.7); RTX 2070 S
- 12C AMD R9-3900X @ 3.8 GHz (4.1); GTX 1080Ti (ID6), RTX 2070 (ID5)
- 6C Intel i5-8600K @ 3.6 (4.1); RTX 2070 S
- 6C Intel i5-9600K @ 3.7 (4.3)
- 12C AMD R9-3900X @ 3.8 (4.1); RTX 2070 S (ID5), RTX 2080 (ID8)
- 6C AMD R5-2600X @ 3.6 (4.0); RTX 3070
- 10C Intel i9-10850K @ 3.6 (4.6); RTX 3070 Desktop in my office
- 12C AMD R9-3900X @ 3.8 (4.1); GTX 2070 S (ID5), RTX 3070 (ID6)
- 12C AMD R9-3900X @ 3.8 (4.1); GTX 1650

Idle power usage: ~700 W. Max load power usage: ~2.3 kW.

Electricity price: 357 Ft/kWh (insert sarcastic comment here)

Idle yearly electricity cost: 2.2 M HUF

Full load yearly electricity cost: 7.2 M HUF

Expensive! So what can I do to reduce this?

National HPC resources

Helyszín	Budapest	Budapest2	Szeged	Debrecen	Debrecen2-GPU (Leo)	Debrecen3-Phi (Apollo)	Pécs	Miskolc
Típus	HP CP4000SL	HP SL250s	HP CP4000BL	SGI ICE8400EX	HP SL250s	HP Apollo 8000	SGI UV 1000	SGI UV 2000
CPU-k / node	2	2	4	2	2	2	192	44
Core-ok / CPU	12	10	12	6	8	12	6	8
Memória / node	66 GB	63 GB	132 GB	47 GB	125 GB	125 GB	6 TB	1.4 TB
Memória / core	2.6 GB	3 GB	2.6 GB	2.6 GB	7 GB	5 GB	5 GB	3.75 GB
CPU	AMD Opteron 6174 @ 2.2GHz	Intel Xeon E5-2680 v2 @ 2.80GHz	AMD Opteron 6174 @ 2.2GHz	Intel Xeon X5680 @ 3.33 GHz	Intel Xeon E5-2650 v2 @ 2.60GHz	Intel Xeon E5-2670 v3 @ 2.30GHz	Intel Xeon X7542 @ 2.66 GHz	Intel Xeon E5-4627 v2 @ 3.33 GHz
GPU	-	-	2 * 6 Nvidia M2070	-	68 * 3 Nvidia K20x + 16 * 3 Nvidia K40x	-	-	-
Intel Xeon Phi (KNC)	-	14 * 2 * Intel(R) Xeon Phi(TM) MIC SE10/7*20 Intel Xeon Phi	-	-	-	45 * 2 * Intel(R) Xeon Phi(TM) MIC SE10/7120	-	-
Linpack teljesítmény (Rmax)	5 Tflops	27 Tflops	20 Tflops	18 Tlops	254 Tflops	~106 Tflops	10 Tflops	8 Tflops
Compute node-ok száma	32	14	50	128	84	45	1	1
Dedikált storage	50 TB	500 TB	250 TB	500 TB	585 TB (Phi-vel közös)	585 TB (GPU-val közös)	500 TB	240 TB
Interconnect	IB QDR	IB NB FDR	IB QDR	IB QDR	IB NB FDR	IB NB FDR	Numalink 5	Numalink 6
Scheduler	SLURM	SLURM @	SLURM @	SLURM	SLURM®	SLURM @	SLURM @	SLURM
MPI	OpenMPI (ompi)	IntelMPI (impi)	OpenMPI (ompi)	SGI MPT (mpt)	OpenMPI (ompi)	OpenMPI (ompi)	SGI MPT (mpt)	SGI MPT (mpt)

These HPC resources are very outdated. Debrecen (CPU), Debrecen-2 (GPU) and Miskolc (CPU) I would consider, but there are far better options elsewhere.

PRACE

COMP

(Partnership for Advanced Computing in Europe)

- <u>https://prace-ri.eu</u>
- Seeks to facilitate access to research infrastructure.
- 25 member countries, and 5 hosting countries. Member countries provide national resources (KIFÜ in Hungary), and some pan-national resources.
- EC funded.
- Training (coding) and user support
- Infrastructure support (for admins)
- Events (PRACEDays, summits, programming
- guides etc)
- Check it out

PRACE Resources

- HPC systems in France, Germany, Italy, Spain and Switzerland (blue = GPUs)
- *Free* access for academics at an EU-based institution
- Project Access applications 2/yr (deadlines: March & September).
- Online proposal submission through https://pracecalls.eu
- Minimum request 15-35M CPU core hours.
- Focused on large, massively parallel simulations.
- Preparatory Access available (code testing and debugging). Always open, quarterly cut off dates – 1st working day of the quarter (March; June; September; December).
- Duration: 1 yr.
- Hardware: Intel Skylake 2x24 @ 2.7 GHz, AMD Epyc 2x64 @ 2.5 GHz. Nvidia P100 or V100.

EuroHPC Resources

- <u>https://prace-ri.eu/hpc-access/eurohpc-access/</u>
- <u>Very new</u> systems in Bulgaria, Czechia, Finland*, Luxumbourg, Slovenia. Pending: Italy, Spain, Portugal.
- Online proposal submission through https://pracecalls.eu
- Benchmark and Development access (call deadlines every 1st of the month)
- Regular Access (deadlines March, July, November)
- RA: Minimum 10M CPU/1M GPU hours.
- RA: Proposal is MS Word, 10 pages, <u>much</u> technical info required.
- Strongly suggested to get Benchmark access first to get familiar with the system, run scaling tests, and only then write Regular Access proposal.
- Exascale Access (new!)
- EA: Minimum 20M (Italy; new), 80M (Finland).
- EA: Same proposal format as RA.
- Duration: 1 yr
- Hardware: AMD Epyc 2x64 @ 2.6 GHz or 2.45 GHz. Nvidia A100 or AMD MI250 (LUMI)

*LUMI in Finland uses AMD GPUs rather than Nvidia. Largest supercomputer in the EU.

Collaborative Calls

(Interactive Computing E-Infrastructure)

- <u>https://prace-ri.eu/hpc-access/collaborative-calls/</u>
- Provided by the Fenix institute, part of the Human Brain Project.
- Systems in France, Germany, Italy, Spain, Switzerland.
- Call deadlines: February, April, July, October (approximately).
- Various services (scalable, interactive, storage).
- Minimum request for HPC: 5M CPU hours.
- Proposal: MS Word, 4-8 pages. Not too technical. Submitted through e-mail.
- Duration: 1 yr.
- Hardware: AMD Epyc 2x64 @ 2.25 GHz or Intel Xeon 2x28 @ 2.2 GHz. Nvidia V100.
- Their administrative support is excellent!
- Fun fact: the scientific supervisor at the German JUSUF cluster is Susanne Pfalzner, who works in astrophysics and planetary science.

My experience

• Awarded 6.6M (2022) and 8.4M (2023) CPU hours on JUSUF in Germany through PRACE-ICEI. Have only used GPUs so far; CPU usage on JUSUF is coming.

• Awarded 1.6M (2022) GPU hours on VEGA in Slovenia through EuroHPC. Second proposal for 2.2M (2023) GPU hours pending. No CPU usage.

• Awarded Benchmark access to VEGA in Slovenia and KAROLINA in Czechia in November 2021.

• KAROLINA access is complicated and tedious and requires an e-mail certificate issued by KIFÜ (IT Team can confirm how difficult this was). VEGA and JUSUF access is straightforward, only requires SSH keys.

- VEGA and JUSUF use the SLURM scheduler; KAROLINA uses PBS.
- VEGA technical support is fast and excellent! JUSUF is similar, but I have less experience. In contrast, my experience with KAROLINA was not good. I <u>cannot</u> recommend using this system.
- Have not tried other systems or written a PRACE Project proposal because they do not meet my needs.
- Never been in the queue for GPU usage longer than 12 hours on both systems.
- All awarded projects require a written report at the end no later than 3 months after the project has ended.
- All awarded projects should be acknowledged in resulting publications. Details on the websites.
- We should not all compete with each other on the same systems!

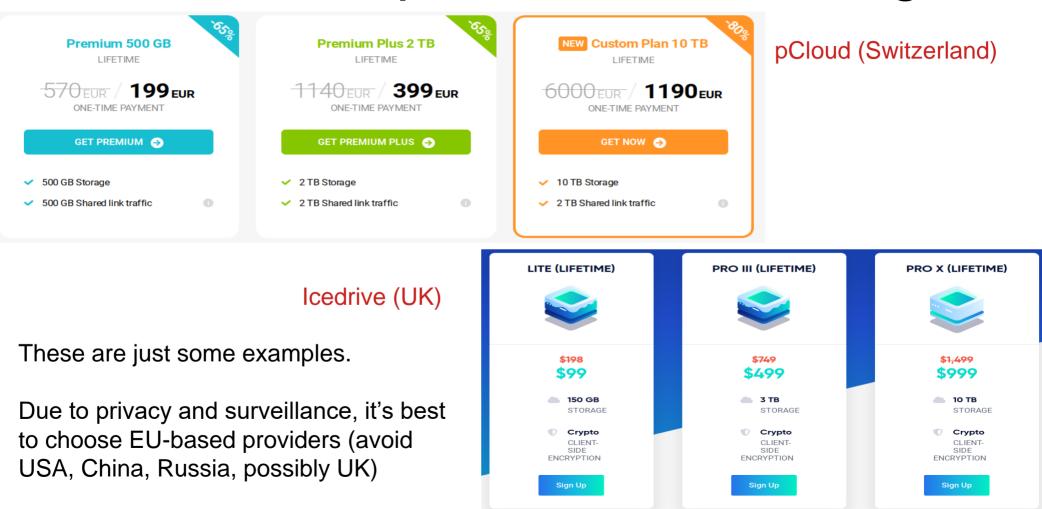
Public HPC limitations

- Limited running time (typically 2-7 days) \rightarrow Requires frequent starting and stopping of the simulations, which can accumulate errors. Also need to find a way to have the submission script resubmit itself.
- Much lower CPU clockspeed; ~3 GHz on HPC clusters vs. ~4 GHz on desktop PCs.
- Project duration 1 yr, so sims that take longer need different resources.
- Often oversubscribed, so sometimes have to wait in the queue for >24 h.
- Proposal and report writing

PRACE-ICEI storage options

Archival data repositories

Component	Site (Country)	Minimum request	Total Resources for Call 11	Unit
Archival	CEA (FR)	1	1 125	TByte
Archival Data Repository	CSCS (CH)1	1	380	TByte
Archival Data Repository	CINECA (IT)	1	300	TByte
Active Archive 2	BSC (ES)	90	440	TByte


Active data repositories

Component	Site (Country)	Minimum request	Total Resources for Call 11	Unit
HPST@JUELICH	JSC (DE)	10	300	TByte
Lustre Flash	CEA (FR)	10	106	TByte
Data Warp	CSCS (CH)1		5.5	TByte
HPC Storage @ CINECA	CINECA (IT)	1	1 520	TByte
HPC Storage @ BSC	BSC (ES)	2.5	2.5	TByte

The PRACE-ICEI programme also offers archival storage options.

I have no experience with this, but I wanted to mention it here for those of you who are interested.

Some examples of online storage

Commercial options

(rough estimate)

- Amazon AWS EC2
- 1 VM with 32 CPUs continuous usage
- USD 6.3k-7.2/yr (HUF 2.3M+).
- Microsoft Azure
- 1 VM with 32 CPUs continuous usage

• EUR 15k/yr (HUF 6M).

(Hey, it's blooming M\$ after all...)

- Google cloud
- 1 VM with 32 CPUs continuous usage
- EUR 5.3k/yr (HUF 2.1M).

All of these are very expensive for continuous usage such as mine, but for spot/spike usage (need lots of CPUs now for a short time) these options are viable. Pricing usually USD 1-2/hr for 32 CPUs.

For example, it would cost USD 90 for 192 sims lasting about 13 hours, assuming they can all run at the same time (which they may not).