Volatile elements and planet formation
Stein Jacobsen
Harvard University


The radii and orbital periods of 4,000+ confirmed/candidate exoplanets have been precisely measured by the Kepler mission. The radii show a bimodal distribution, with two peaks corresponding to smaller planets (likely rocky) and larger intermediate-size planets, respectively. While only the masses of the planets orbiting the brightest stars can be determined by ground-based spectroscopic observations, these observations allow calculation of their average densities placing constraints on the bulk compositions and internal structures. However, an important question about the composition of planets ranging from 2 to 4 Earth radii (R) still remains. They may either have a rocky core enveloped in a H2-He gaseous envelope (gas dwarfs) or contain a significant amount of multicomponent, H2O-dominated ices/fluids (water worlds). Planets in the mass range of 10–15 M, if half-ice and half-rock by mass, have radii of 2.5 R, which exactly match the second peak of the exoplanet radius bimodal distribution. Any planet in the 2-to 4-R range requires a gas envelope of at most a few mass percentage points, regardless of the core composition. To resolve the ambiguity of internal compositions, we use a growth model and conduct Monte Carlo simulations to demonstrate that many intermediate-size planets are "water worlds."

The Earth–Moon system has unique chemical and isotopic signatures compared with other planetary bodies; any successful model for the origin of this system therefore has to satisfy these chemical and isotopic constraints. The Moon is substantially depleted in volatile elements such as potassium compared with the Earth and the bulk solar composition, and it has long been thought to be the result of a catastrophic Moon-forming giant impact event. Volatile-element-depleted bodies such as the Moon were expected to be enriched in heavy potassium isotopes during the loss of volatiles; however, such enrichment was never found. Here we report new high-precision potassium isotope data for the Earth, the Moon and chondritic meteorites. We found that the lunar rocks are significantly (>2σ) enriched in the heavy isotopes of potassium compared to the Earth and chondrites (by around 0.4 parts per thousand). The enrichment of the heavy isotope of potassium in lunar rocks compared with those of the Earth and chondrites can be best explained as the result of the incomplete condensation of a bulk silicate Earth vapor at an ambient pressure that is higher than 10 bar. We used these coupled constraints of the chemical loss and isotopic fractionation of K to compare two recent dynamic models that were used to explain the identical non-mass-dependent isotope composition of the Earth and the Moon. Our K isotope result is inconsistent with the low-energy disk equilibration model, but supports the high-energy, high-angular-momentum giant impact model for the origin of the Moon. High-precision potassium isotope data can also be used as a 'palaeo-barometer' to reveal the physical conditions during the Moon-forming event.

The giant impact hypothesis remains the leading theory for lunar origin. However, current models struggle to explain the Moon's composition and isotopic similarity with Earth. Here we present a new lunar origin model. High-energy, high-angular-momentum giant impacts can create a post-impact structure that exceeds the corotation limit, which defines the hottest thermal state and angular momentum possible for a corotating body. In a typical super-corotation-limit body, traditional definitions of mantle, atmosphere, and disk are not appropriate, and the body forms a new type of planetary structure, named a synestia. Using simulations of cooling synestias combined with dynamic, thermodynamic, and geochemical calculations, we show that satellite formation from a synestia can produce the main features of our Moon. We find that cooling drives mixing of the structure, and condensation generates moonlets that orbit within the synestia, surrounded by tens of bars of bulk silicate Earth vapor. The moonlets and growing moon are heated by the vapor until the first major element (Si) begins to vaporize and buffer the temperature. Moonlets equilibrate with bulk silicate Earth vapor at the temperature of silicate vaporization and the pressure of the structure, establishing the lunar isotopic composition and pattern of moderately volatile elements. Eventually, the cooling synestia recedes within the lunar orbit, terminating the main stage of lunar accretion. Our model shifts the paradigm for lunar origin from specifying a certain impact scenario to achieving a Moon-forming synestia. Giant impacts that produce potential Moon-forming synestias were common at the end of terrestrial planet formation.