Life and Death of the First Stars

Alexander Heger
Monash University, Australia


The first stars are unique not only in being first but also because of being first, they have a unique and pristine primordial initial composition, which can dramatically alter both their evolution, the way they die as supernovae, and their resulting nucleosynthesis. For example, the recently discovered most iron-poor star known, SM0313-6708, hints at some primordial production process of calcium that can only be found and seen in such pristine stars. Another example is that reduced mass loss and higher characteristic initial masses may lead to a population of pair instability supernovae that could produce a very unique abundance pattern. No direct observations of these stars are possible at this time, however, so our ability to study these early stars is limited to indirect measurements and numerical simulations, though possibly we might be able to observe some of their stellar deaths in the near future. Stellar forensics based on nucleosynthesis patterns preserved in subsequent generations of stars may be used to attempt reconstruction of the properties of these first stars. But in order to be able to use this tool, we need know what abundances were synthesised in these first generations of stars.